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Two immiscible fluid layers that are subjected to a temperature gradient perpen-
dicular to their interface exhibit a range of behaviors that is considerably richer than
for the single-fluid case. We describe a numerical technique for calculating thermally
driven flows in two fluid layers which uses a simple technique based on a Landau
transformation to map the physical domain into a reference domain, enabling the
unknown location of the deformable interface to be determined. The coupled system
of nonlinear partial differential equations, comprising mapping, continuity, momen-
tum, and energy equations and the appropriate boundary conditions, is solved using
the finite-element method in two-dimensional domains. Numerical bifurcation tech-
niques are used to investigate the multiplicity of the solution set. The case of heating
from above is considered in some detail and the results of finite-element computations
are compared with linear stability calculations performed on unbounded domains.
The principal advantages of the finite-element approach are the ability to determine
the effect of non-90◦ contact angles (when the conducting solution no longer exists
and traditional linear stability approaches fail), the ability to determine the role of
finite aspect ratio domains and the relative volume fractions of the two fluids, and
the capability of calculating the nonlinear development of flows beyond the critical
temperature gradient. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

When a vertical temperature gradient is applied across a thin horizontal layer of a single
fluid whose surface is exposed to the atmosphere, convective motion arises above a critical
applied temperature difference. Convection may be driven either by bulk forces arising
from temperature-induced density differences (buoyancy) or by surface forces due to the
temperature-dependent nature of the surface tension (thermocapillarity). The relative size of

277

0021-9991/02 $35.00
c© 2002 Elsevier Science (USA)

All rights reserved.



278 TAVENER AND CLIFFE

these two effects depends on the depth of the fluid layer, with thermocapillary forces domi-
nating in sufficiently thin layers. Pioneering work on the relative importance of thermocapil-
larity and buoyancy for single fluids was performed by Block [1], Pearson [2], and Nield [3].

The range of possible behaviors when two immiscible fluid layers are confined between
parallel plates and subjected to a temperature gradient perpendicular to the plates is con-
siderably richer. For example, the layers may be unstable when heated from above, despite
the fact that their density increases in the same direction as the gravity vector and thus the
fluids are stably stratified. The motions in the two layers may be thermally coupled rather
than viscously coupled. In this surprising flow regime, clockwise convective motions in the
upper layer lie on top of clockwise rolls in the lower layer (and similarly for anticlock-
wise rolls). Unlike the single fluid case, time-dependent flows may develop directly from
the conducting solution. A comprehensive review of the considerable literature to date is
provided by Velarde et al. [4] and by Andereck et al. [5].

The preponderance of stability analyses have been performed assuming unbounded or
periodic domains. For example, Zeren and Reynolds [6] predicted the onset of convection
on heating from above but were unable to find it experimentally. Imaishi and Fujinawa [7, 8]
extended the stability analysis of Nield [3] (including both gravitational and surface tension
effects) to two-fluid systems but assumed an undeformable interface and did not consider
time-dependent disturbances. Rasanat et al. [9] considered layers of almost equal densities
and predicted the onset of oscillatory instabilities but were unable to detect them experimen-
tally. Their analysis was extended considerably by Renardy and Joseph [10] and Renardy
and Renardy [11, 12]. Recently Juel et al. [13] observed experimentally both the onset of
convection on heating from above and oscillatory motion at onset in two-fluid systems.

Surprisingly few two- or three-dimensional computations have been reported in the liter-
ature. Géoris et al. [14, 15] performed finite-difference computations with a nondeforming
interface in a three-layer system and compared their results with experiment. Recently,
Johnson and Narayanan [16, 17] recognized the need for stability calculations to be per-
formed in bounded domains, due to the number of experiments performed in small-aspect
ratio devices (e.g., [5, 18]) and because of the necessarily finite domains in industrial appli-
cations. Much of the recent interest in two-fluid systems has been motivated by the liquid
encapsulated vertical Bridgeman (LEVB) process, used, for example, to grow crystals of
gallium arsenide. Thermocapillary instabilities arising in the melt can affect the quality of
the resulting crystal and the distribution of dopants and can limit the operating conditions
under which crystals are grown. During the manufacturing process the relative volume
fractions of the two fluids and the aspect ratios of the two-fluid domains vary, profoundly
affecting the stability of the system. The numerical techniques we have developed and which
are described here have been designed to cope with both such changes in an efficient manner.

In this paper we compute the two-fluid Rayleigh–Marangoni–Bénard convection problem
in finite rectangular domains with a deformable interface between the two fluids. Nonlin-
earities are present both in the governing equations which pertain within each fluid and
in the boundary conditions at the deformable interface between the two fluids. A jump in
pressure exists across the interface that is proportional to the product of the curvature of the
interface and the (temperature dependent) interfacial tension. We solve the full nonlinear
problem and make no assumptions regarding the relative sizes of the inertial and diffusive
terms in the momentum equations, or the relative magnitudes of the properties of the two
fluids. The contact angle is not required to be close to 90 degrees, nor is the free surface
curvature required to be small.
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Cliffe and Tavener [19] used the finite-element method, coupled with numerical bifurca-
tion techniques, to determine the quantitative effect of free-surface deformations on the bi-
furcation structure in two-dimensional single-fluid Marangoni–Bénard convection systems.
For contact angles other than 90 degrees, the free surface is no longer an isothermal sur-
face, and shear stresses exist along the free surface, arising from the temperature-dependent
nature of the surface tension. There is no conducting solution that satisfies both the equi-
librium and boundary conditions, and flows comprising an even numbers of cells develop
continuously as the applied temperature gradient is increased. An analogous phenomena is
observed in multiple fluid layers when the contact angle between the fluid interface and the
vertical domain walls is other than 90 degrees.

We do not attempt in this paper to locate the onset of oscillatory flows. To do so effi-
ciently would require a robust strategy for solving the generalized eigenvalue problem that
results from a linear stability analysis and, in particular, for determining those generalized
eigenvalues with the smallest real part. An efficient numerical technique for finding these
“most dangerous eigenvalues” when a mixed finite-element method is used to discretize
the Navier–Stokes equations has been developed by Cliffe et al. [20] and has been applied,
for example, to determine the linear stability of flow past a sphere in a pipe [21]. This
technique makes extensive use of the special block structure of the generalized eigenvalue
problem. Efficient ways to utilize the more complicated block structure that arises when
two different fluids are coupled via a deformable interface are currently under investigation.
While it would be possible to construct an extended system to locate Hopf bifurcation points
(see, e.g., [22]), without a good estimate for the critical parameter values and eigenvector,
discovery of a Hopf bifurcation point in this manner would be merely serendipitous. We
concentrate instead on regions of parameter space in which steady behavior is expected
according to the work of Juel et al. [13].

2. GOVERNING EQUATIONS

Consider the flow in the two-dimensional domain sketched in Fig. 1. Applying the
Boussinesq approximation and using ∗ to denote dimensional quantities and derivatives with
respect to dimensional quantities, the system of equations governing two-fluid Rayleigh–
Marangoni–Bénard convection in finite two-dimensional domains with velocity u∗, pressure
p∗, and temperature T ∗ is

∇∗ · u∗ = 0, (1)

�̄m

(
∂u∗

∂t∗ + (u∗ · ∇∗)u∗
)

= ∇∗ · �∗
m − �m g j, (2)

�̄mcm

(
∂T ∗

∂t∗ + (u∗ · ∇∗)T ∗
)

= ∇∗ · (km∇∗T ∗). (3)

Here �m = �̄m(1 − �m(T ∗ − T̄ ∗)) is the density of liquid m, T̄ ∗ is a fixed reference temper-
ature, cm is the specific heat capacity, km is the thermal conductivity,

�∗
m = −p∗ I + �m(∇∗u∗ + (∇∗u∗)T )

is the stress tensor, and �m is the molecular diffusivity. The subscript m = 1, 2 denotes the
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FIG. 1. Sketch of the physical domain.

lower and upper fluids, respectively. Here

∇∗ = i
∂

∂x∗ + j
∂

∂y∗ , ∇2
∗ = ∂2

∂x∗2 + ∂2

∂ y∗2 ,

where i and j are unit vectors in the x- and y-directions, respectively. The boundary
conditions at the interface are

u∗ · n = 0, (4)

[�∗ · n] = �∗
2 · n − �∗

1 · n = −K ∗�n − (t · ∇∗�)t, (5)

[k(∇∗T ∗ · n)] = k2(∇∗T ∗ · n)2 − k1(∇∗T ∗ · n)1 = 0, (6)

where K ∗ is the (dimensional) curvature of the interface, [·] denotes the jump across the
interface, and n and t are the normal and tangential unit vectors, respectively. By convention,
n is the normal vector directed from fluid 1 into fluid 2. The interfacial tension is assumed
to depend linearly on the temperature, and � = �0 − �1(T ∗ − T̄ ∗).

We nondimensionalized Eqs. (1)–(3) and boundary conditions (4)–(6) using the distance
between the plates d = d1 + d2 as the length scale. This choice was based on our desire
to perform continuation with respect to the volume fraction. Choosing d1 as the length
scale would mean that in such continuation studies all nondimensional groups involving
the length scale would change simultaneously, a situation we wished to avoid. The velocity
scale was chosen to be �1/d , where �1 is the thermal diffusivity of the lower fluid, and
�1 = k1/(�̄1c1). The corresponding time and stress scales were d2/�1 and �1�1/d2, respec-
tively. The temperature was nondimensionalized as T = (T ∗ − T̄ ∗)/�T ∗, where �T ∗ is
one-half the temperature difference between the top and bottom boundaries. This choice of
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the temperature scale was made in order to simplify initial comparisons with known results
for a single fluid. (Marangoni and Rayleigh numbers based on a temperature scale equal
to the difference in temperature between the two plates can be obtained by multiplying the
values reported here by a factor of two.)

The nondimensionalized weak form of the steady equations corresponding to the above
choices is

∫
�1

(∇ · u)q dA +
∫

�2

(∇ · u)q dA = 0, (7)

∫
�1

[(
1

Pr
(u · ∇)u + (G − Ra T ) j

)
· w − p∇ · w + (∇u + ∇uT ) : ∇w

]
dA

+
∫

�2

[
�r

(
1

Pr
(u · ∇)u + (G − �r Ra T ) j

)
· w − p∇ · w + �r (∇u + ∇uT ) : ∇w

]
dA

+
∫

�i

(
1

Ca
− Ma T

)
t · dw

ds
ds = 0, (8)

∫
�1

((u · ∇T )� + ∇T · ∇� ) dA +
∫

�2

(�r cr (u · ∇T )� + kr∇T · ∇� ) dA = 0, (9)

where �1, �2 are the two-fluid regions, �i is the interface between them, and q, w, and �

are test functions (see the Appendix for details.) The nondimensional parameters are the
Prandtl number, Pr, the Galileo number, G, the capillary number, Ca, the Rayleigh number,
Ra, and the Marangoni number, Ma, defined by

Pr = 	1

�1
, G = gd3

	1�1
, Ca = �1�1

�0d
, Ra = g�1∇T ∗d3

	1�1
, Ma = �1∇T ∗d

�1�1
,

where 	1 = �1/�̄ 1. The ratios appearing in the integrals to be evaluated in �2, i.e., �r , �r ,
�r , cr , and kr , are

�r = �̄ 2

�̄ 1
, �r = �2

�1
, �r = �2

�1
, cr = c2

c1
, and kr = k2

k1
.

Finally, we defined the volume ratio to be

vr = volume fluid 2

volume fluid 1
,

and the aspect ratio to be


 = l

d
,

where l is the distance between the vertical side walls. To determine the unknown location
of the interface, these equations were coupled to a Landau coordinate transformation,

x = 
� , y = 2h(�)� in fluid 1,

x = 
� , y = 1 − 2(1 − h(�))(1 − �) in fluid 2.
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The (unknown) height of the interface h = h(�) was then calculated by coupling the
differential equation

∂h

∂�
= 0 (10)

to Eqs. (1)–(3) and imposing the kinematic boundary condition (4). This was achieved by
rewriting (10) in weak form,

∫
�1

∂h

∂�

 dA +

∫
�2

∂h

∂�

 dA = 0, (11)

with test function 
 and solving (11) simultaneously with Eqs. (7)–(9). Thus

u = u(x(�), y(h(�),�)), p = p(x(�), y(h(�),�)), T = T (x(�), y(h(�),�)),

where (� ,�) are the coordinates in the reference domain

�ref = {(� ,�) : (� ,�) ∈ [−0.5, 0.5] × [0, 1]}.

Let

�1,ref = {(� ,�) : (� ,�) ∈ [−0.5, 0.5] × [0, 0.5]},
�2,ref = {(� ,�) : (� ,�) ∈ [−0.5, 0.5] × [0.5, 1]}.

All computations were performed in the reference domain �ref. Nonslip boundary con-
ditions were imposed at horizontal (� = 0, 1) and vertical (� = ±0.5) solid boundaries.
The temperature was specified along the top and bottom surfaces and adiabatic conditions
were applied at the vertical walls. Heating from above or from below was achieved by
appropriate choice of the temperature boundary conditions at the top and bottom surfaces.
The two contact angles were defined at (� ,�) = (±0.5, 0.5) and the interfacial integral was
evaluated along � = 0.5. The volume ratio was imposed by specifying the area A1 of �1,ref.
The area of �2 was then given by A2,ref = 1 − A1,ref.

3. FINITE-ELEMENT SOLUTION TECHNIQUE

The weak equations (7)–(9) and (11) and the boundary conditions described above were
solved using the finite-element method. All the computations reported below were per-
formed using isoparametric quadrilateral elements with biquadratic interpolation of the
height of the interface, h, the velocity components u and v, and the temperature, T . Dis-
continuous linear interpolation was employed for the pressure field. Noting that

u · n = 0 on ��1,ref,

we recognize that one of the (local) element divergence constraints is redundant, and it is
replaced by a constraint on the volume of fluid 1. Since the volumes of fluids 1 and 2 are not
independent, this single constraint was sufficient to control the volume of fluid 2 as well.
The pressure was normalized by specifying its value at one particular point. When extended
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system techniques are used to locate bifurcation points, not only must the weak form itself be
evaluated, but a number of its derivatives with respect to both variables and parameters are re-
quired. All subroutines to evaluate the weak form and its derivatives were written using a pre-
processor, ENTCODE, based on Mathematica. A discussion of this technique appears in [23].

The nonlinear system of equations resulting from the finite-element discretization may
be written as

f (a, b) = 0, f : RN × Rp �→ RN . (12)

Let S be a finite-dimensional representation of the reflectional symmetry operator about
� = 0; thus S is an (N × N ) orthogonal matrix, where S2 = I but S �= I . The finite-
dimensional system of nonlinear algebraic equations (12) is equivariant with respect to
S; i.e.,

S f (a, b) = f (Sa, b). (13)

The orthogonal matrix S induces a unique decomposition of RN into symmetric and anti-
symmetric subspaces,

RN = RN
s ⊕ RN

a ,

where

RN
s = {x ∈ RN : Sa = a},

RN
a = {x ∈ RN : Sa = −a}.

Symmetric solutions are those for which

h(� ,�) = h(−� ,�),

u(� ,�) = −u(−� ,�),

v(� ,�) = v(−� ,�),

p(� ,�) = p(−� ,�),

T (� ,�) = T (−� ,�).

Antisymmetric solutions are those for which

h(� ,�) = −h(−� ,�),

u(� ,�) = u(−� ,�),

v(� ,�) = −v(−� ,�),

p(� ,�) = −p(−� ,�),

T (� ,�) = −T (−� ,�).

At a symmetry-breaking bifurcation point (a0, b0),

∂ f
∂a

∣∣∣∣
(a0,b0)

z = 0,
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where a0 ∈ RN
s and the null eigenvector z ∈ RN

a . Since the symmetries of the solution and
eigenvector are known, all computations may be performed in one-half of the domain. Let
�−

ref be defined as

�−
ref =

{
(� ,�) : (� ,�) ∈

[
−1

2
, 0

]
× [0, 1]

}
.

When computing a symmetric solution on �−
ref, a global volume constraint is required.

Nonslip velocity boundary conditions are imposed along � = 0, 1 and � = −1/2, and u = 0
along the symmetry axis � = 0 (by symmetry). The kinematic condition is applied along
the interface � = 0.5. In other words

u · n = 0 on ��−
1,ref

(and similarly u · n = 0 on ��−
2,ref). As before, it suffices to replace one of the (local)

element divergence constraints with a volume constraint. However, when computing the
null eigenvector on one-half of the domain, the u-velocity component of the eigenvector û
is not required to vanish by symmetry along � = 0 and all element divergence constraints
are required. A volume constraint is therefore not applied to the eigenvector.

The linearized kinematic condition along the interface is

−u
∂ ĥ

∂�
+ 
v − û

∂h

∂�
+ 
v̂ = 0, (14)

where h, u, and v are components of the solution, ĥ, û, and v̂ are components of the
perturbation, and 
 is the aspect ratio. When using the Werner–Spence extended system
[24] to locate symmetry-breaking points, Eq. (14) is used to determine the h-component
of the null eigenvector ĥ at each node along the free surface. For all symmetric solutions,
regardless of the value of the contact angle, the velocity components u and v are zero at
the center of the free surface, since both u = 0 and ∂h/∂� = 0 by symmetry. (The latter
condition requires that the free surface has zero slope at the centerline and therefore v = 0
at the centerline.) At the symmetry axis, Eq. (14) reduces to

v̂ = 0. (15)

For symmetric solutions, the v-component of velocity is symmetric about � = 0, so the
v-component of a symmetry-breaking eigenvector must be antisymmetric about � = 0, and
therefore v̂ must be zero along the symmetry axis. The kinematic condition (15) used to
determine ĥ at the middle of the free surface is therefore identical to the condition on v̂

which is imposed by symmetry, and a naive implementation will have two linearly dependent
equations. A nonsingular system of equations is obtained by replacing (15) at � = 0 with
ĥ = 0, since the h-component of the eigenvector must be zero along � = 0 by reason of it
being antisymmetric about � = 0. With these extra conditions, the Werner–Spence extended
system [24] can be used as usual.

3.1. Subspace-Breaking Bifurcations

Two-cell (even cell) flows are symmetric with respect to the midplane symmetry and so
do not develop as a result of breaking of the midplane symmetry. Rather, bifurcation to
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even-cell flows is associated with the breaking of a subspace in which the velocity field is
zero. (For a discussion of subspace breaking and methods for computing subspace-breaking
bifurcations, see [25, 26].) An extended system similar to the Werner–Spence system is
constructed, and by appropriate application of boundary conditions, the conducting solution
is required to lie within a subspace in which the velocity field is identically zero, while the
null eigenvector is required to lie outside this subspace (and have a nontrivial velocity
field).

When computing the onset of two-cell (even cell) flows the null eigenvector is symmetric
and the problems described in the previous section do not arise. There is no symmetry
requirement for v̂ to be zero along the centerline. Indeed in the interior of the convecting
flow, the v-component of the eigenvector is nonzero along � = 0 and is required to be
zero at the free surface due to the kinematic boundary condition only. (For symmetric
solutions, the free surface must be horizontal at the centerline and u = 0 along the centerline.)
When computing bifurcations from symmetric flows to other symmetric flows on �−

ref, the
global constraint must be retained when computing the eigenvector, since for symmetric
eigenvectors

û · n = 0 on ��−
1,ref,

4. RESULTS

4.1. Static Meniscus Problems

As a first test of the Landau transformation technique we computed the shape of the inter-
face between two isothermal fluid layers with a fixed contact angle other than 90 degrees. In
the absence of gravity the equilibrium-free surface is the arc of a circle. The L2 difference
between the computed and exact interface locations is reported in Table I. The jump in
pressure across the free surface is the product of the (constant) curvature and the surface
tension. The L2 difference between the computed pressure in the lower fluid and the exact
value is reported in Table II. Finally, the convergence of the velocity field (towards zero)
is given in Table III. The observed quadratic convergence rate for both the pressure field
and the interface location is something of a surprise, as linear convergence was observed
by Cliffe and Tavener [19] using an orthogonal transformation. We suggest that the free
surface location converges at one order lower than the velocity field, since the location of
the free surface is essentially determined by the kinematic condition which involves deriva-
tives of the velocity field. All calculations were performed with parameter values Ra = 0,
Ma = 10, Pr = 1, G = 0, Ca = 10−2, �r = �r = cr =�r = 10−5, kr = 1, and 
 = 0.5 and a
contact angle of 61.4 degrees.

TABLE I

Convergence of the Interface Location

Mesh L2 interface error Ratios

4 × 4 9.296907e-05
8 × 8 2.385825e-05 3.90

16 × 16 6.045105e-06 3.95
32 × 32 1.521926e-06 3.97
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TABLE II

Convergence of the Pressure Field

Mesh L2 pressure error Ratios

4 × 4 4.926325e-01
8 × 8 1.387477e-01 3.55

16 × 16 3.812523e-02 3.64
32 × 32 9.551118e-03 3.99

4.2. Passive Upper Fluid

If the upper fluid is “passive,” the results computed for Marangoni–Bénard convection
in a single fluid by Cliffe and Tavener [19] should be recovered. A passive upper fluid
was approximated by setting the density, viscosity, expansion, and specific heat ratios to be
10−10. The volume fraction of the lower fluid, where

volume fraction = v1

v1 + v2
= 1

1 + vr
,

was varied between 0.1 and 0.99. The width of the domain was set to equal the volume
of the lower fluid, i.e., 
 = v1, so that the aspect ratio of the lower fluid was always equal
to one. By setting the conductivity ratio equal to the volume ratio, i.e., kr = vr , the tem-
perature drop across both fluids was equal for all values of the volume fraction. In the
previous computations of convection in a single fluid, the temperature was normalized by
the temperature drop across the fluid. The conductivity ratio was adjusted in the above
manner in order to make comparisons with the single-fluid calculations easier. Similarly,
the length scale in the single-fluid calculations was the depth of the (single) layer, and the
critical Marangoni numbers computed for the two-layer case were adjusted appropriately.
The critical Marangoni numbers at which symmetry breaking to a one-cell flow (in each
fluid) occurs in the two-fluid formulation with a passive upper fluid are shown in Fig. 2. The
horizontal dashed line at Ma = 212.14 is the corresponding critical value from the one-fluid
calculations.

It is perhaps not immediately obvious why the two-fluid calculations with a passive
upper fluid approach the corresponding value for a single fluid only in the limit as the
depth of the upper fluid approaches zero. The answer lies in the different thermal boundary
conditions applied in the two instances. Let subscripts 1 and 2 denote the lower and upper
fluids, respectively, and let superscripts 0 and 1 denote, respectively, the trivial conducting
solution and a perturbation about the conducting solution. All such perturbations decay for

TABLE III

Convergence of the Velocity Field

Mesh L2 velocity error Ratios

4 × 4 3.721297e-04
8 × 8 3.570628e-05 10.42

16 × 16 3.301944e-06 10.81
32 × 32 2.991931e-07 11.04
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FIG. 2. Critical Marangoni number for the onset of a single-cell flow (in each fluid) as a function of volume frac-
tion of the lower fluid, i.e., 1/(1 + vr ), given a passive upper fluid. Pr = 1, Ca = 10−5, �r = �r =�r = cr = 10−10,
kr = vr , 
 = 1/(1 + vr ).

Marangoni numbers less than the critical. Assume that the free surface in the one-fluid case
and the interface in the two-fluid case are perpendicular to the y-axis. For a single fluid, the
thermal boundary condition at the free surface is

∂T

∂y
= −LT .

Here L is the Biot number,

L = hd

k
,

where h is the surface thermal conductance, d is the length scale, and k is the thermal
conductivity of the fluid. If we perturb about the conducting solution and let

T = T 0 + �T 1,

the boundary condition for the linear stability problem is

∂T 1

∂y
= −LT 1. (16)
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For two immiscible fluids, the thermal boundary condition at their interface is

k1
∂T1

∂y
= k2

∂T2

∂y
,

and if

T = T 0
i + �T 1

i , i = 1, 2,

the leading-order thermal boundary conditions for the linear stability problem are

T 1
1 = T 1

2 (17)

and

k1
∂T 1

1

∂y
= k2

∂T 1
2

∂y
. (18)

If we make the approximation

∂T 1
2

∂y
= −T 1

2

d2
, (19)

where d2 is the depth of the upper fluid, the boundary condition (18) becomes

∂T 1
1

∂y
=

(
k2

k1d2

)
T 1

1

using (17). The two-fluid thermal boundary conditions are equivalent to those for a single
fluid (16) if

L = k2

k1d2
.

However, this equivalence relies on the approximation (19) being appropriate. When d2 is
nonnegligible, (19) can be a very poor approximation, but it becomes increasingly accurate
as d2 → 0.

4.3. Top Heating for Realistic Parameter Values

When the contact angles are 90 degrees there is a nonconvecting solution of the equilib-
rium equations in which the temperature profile across the two fluids is piecewise linear,
whose gradients are inversely proportional to the thermal conductivities. Odd-cell flows
arise at symmetry-breaking bifurcation points at which the Z2 symmetry about the verti-
cal midplane is broken. Even-cell flows respect this symmetry and arise at transcritical,
subspace-breaking bifurcation points. Contact angles other than 90 degrees do not permit
nonconvecting solutions, since a temperature gradient must always exist along the interface.
Provided the contact angles at both sides are equal, the boundary value problem remains
equivariant with respect to a Z2 symmetry about the vertical midplane and odd-cell flows
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TABLE IV

Fluid Properties of Acetonitrile and n-Hexane as Reported

by Juel et al. [13]

Property Acetonitrile n-Hexane

� (103 kg m−3) 0.776 0.655
	(10−6 m2 s−1) 0.476 0.458
k(10−1 J m−1 s−1 K−1) 1.88 1.20
cp(103 J kg−1 K−1) 2.23 2.27
�(10−3 K−1) 1.41 1.41
�0(10−3 N m−1) 28.66 17.89
�1(10−5 N m−1 K−1) 12.63 10.22

arise at pitchfork bifurcation points. Since there is no longer a conducting solution, there
is no invariant subspace from which even-cell flows can arise, and the transcritical bifurca-
tion to even-cell flows is disconnected. Similar features have been discussed by Cliffe and
Tavener [19] in the context of single-fluid flows.

In two-fluid convection, the novel possibility exists of instabilities arising despite the
fact that the fluid is heated from above, and we will concentrate on this scenario. Juel
et al. [13] demonstrated experimentally the existence of convection in a perfluorinated oil
and silicone oil system that is heated from above. They also presented interesting results
from a linear stability analysis of an acetonitrile and n-hexane system that is unstable when
heated from above (Table IV). We concentrate on the latter system despite the fact that
Juel et al. [13] do not report experimental results owing to problems of miscibility. Unlike
Juel et al. [13], we do not assign �T ∗ a positive or negative sign to indicate whether our
assigned temperature gradient is parallel or antiparallel to the direction of gravity. Thus
all our Marangoni numbers are positive even when the upper boundary is hotter than the
lower. The direction of the temperature gradient is determined by the Dirichlet boundary
conditions applied to the temperature field at the top and bottom surfaces.

We first show in Fig. 3 a bifurcation diagram for equal amounts of the two fluids and aspect
ratio 1.5, for 90-, 89.99-, and 89.89-degree contact angles. The ordinate is the temperature
at the midpoint of the interface, i.e., T (0, h(0)). When 90-degree contact angles are imposed
there exists a conducting solution for all values of the Marangoni number. The temperature
at the midpoint of the interface can be calculated analytically for this conducting solution
as

Tinterface = 2kr

1 + kr
= (2)(0.638)

1 + 0.638
= 0.779.

Notice that the bifurcation from the conducting solution is clearly transcritical. For contact
angles other than 90 degrees the bifurcation diagram is disconnected in the expected manner.
For contact angles less than 90 degrees, the center of the interface lies further away from
the hot top boundary than do the edges and is therefore cooler than the edges, and cooler
than the conducting solution. Surface tension gradients will drag fluid from the edges to the
middle of the domain, producing downwelling along the centerline of the lower fluid and
upwelling along the centerline of the upper fluid. Streamfunction and isotherms for the two
types of stable two-cell flows are shown for Ma = 2100 and contact angle 89.89 degrees in
Figs. 4 and 5.



290 TAVENER AND CLIFFE

FIG. 3. Bifurcation diagram near instability to two-cell flows when heating from above for contact angles equal
to 90 (solid line), 89.99 (dashed line), and 89.89 (chained line) degrees. Pr = 4.38, Ca = 2.5 × 10−6, �r = 0.844,
�r = 0.812, �r = 1.0, cr = 1.02, kr = 0.638, vr = 1.0, 
 = 1.5.

The physics of heating from above has recently been summarized by Johnson and
Narayanan [16]. The simplest instability mechanism, and the only one relevant to the
computations reported here, is sketched in Fig. 6. In the upper diagram, a local temperature
elevation in the center of the interface is assumed. This lowers the local surface tension and
fluid is dragged toward the edges of the domain. It is replaced by hot fluid flowing downward
from the top boundary, reinforcing the perturbation. The lower fluid is viscously coupled
and there is upwelling of cold fluid from the bottom boundary, which tends to dampen the
perturbation. The lower sketch in Fig. 6 shows the opposite scenario. Again, the flow in the
upper fluid reinforces the instability, while the flow in the lower fluid tends to reduce it.
We now consider the effect of varying the conductivity, volume, density, and specific heat
ratios on these mechanisms. For simplicity, we will always consider the case of 90 degree
contact angles.

4.3.1. Relative Density and Specific Heat Ratios

The heat carried by the convecting upper fluid depends on the product of its density and
its heat capacity. Since the flow in the upper fluid sustains the perturbation, the critical
Marangoni number decreases for increasing density ratio and increasing specific heat ratio,
as is shown in Figs. 7 and 8, respectively. The effect of the density ratio even in the absence
of gravity is at first surprising, but the role of the upper fluid when heating from above
has been recognized at least back to the work of Sternling and Scriven [27] and Vidal and
Acrivos [28].
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FIG. 4. Streamlines and isotherms when heating from above for the connected two-cell flow at Ma = 2100
and contact angle 89.89 degrees (point A, Fig. 3). Solid lines indicate positive values of the streamfunction
(anticlockwise circulation) and dashed lines indicate negative values of the streamfunction (clockwise circulation).
Pr = 4.38, Ca = 2.5 × 10−6, �r = 0.844, �r = 0.812, �r = 1.0, cr = 1.02, kr = 0.638, vr = 1.0, 
 = 1.5.

FIG. 5. Streamlines and isotherms when heating from above for the disconnected two-cell flow at Ma = 2100
and contact angle 89.89 degrees (point B, Fig. 3.) Solid lines indicate positive values of the streamfunction
(anticlockwise circulation) and dashed lines indicate negative values of the streamfunction (clockwise circulation).
Pr = 4.38, Ca = 2.5 × 10−6, �r = 0.844, �r = 0.812, �r = 1.0, cr = 1.02, kr = 0.638, vr = 1.0, 
 = 1.5.
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FIG. 6. Thermocapillary instability mechanism when heating from above.
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FIG. 7. Effect of specific heat ratio on bifurcation to two-cell flows when heating from above. Pr = 4.38,
Ca = 2.5 × 10−6, �r = 0.844, �r = 0.812, �r = 1.0, kr = 0.638, vr = 1.0, 
 = 1.5.

FIG. 8. Effect of density ratio on bifurcation to two-cell flows when heating from above. Pr = 4.38,
Ca = 2.5 × 10−6, �r = 0.812, �r = 1.0, cr = 1.02, kr = 0.638, vr = 1.0, 
 = 1.5.
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FIG. 9. Effect of volume ratio on bifurcation to two-cell flows when heating from above. Pr = 4.38,
Ca = 2.5 × 10−6, �r = 0.844, �r = 0.812, �r = 1.0, cr = 1.02, kr = 0.638, 
 = 1.5.

4.3.2. Volume Ratio

For the conducting solution, the temperature at the interface is given by

Tinterface = 2kr

vr + kr
.

For a fixed conductivity ratio, the temperature at the interface increases as the volume ratio
decreases, approaching the temperature of the upper boundary. The driving force for the
instability decreases and so the critical Marangoni number increases, as shown in Fig. 9.

4.3.3. Conductivity Ratio

The temperature at the interface of the conducting solution can also be written as

Tinterface = 2

1 + vr/kr
.

As the conductivity ratio increases at fixed volume ratio, the temperature at the interface
increases, more closely approaching that of the upper boundary. The driving force for the
instability decreases and the critical Marangoni number increases, as shown in Fig. 10.

4.3.4. The Effect of Gravity

The effect of buoyancy on the critical Marangoni number is shown in Fig. 11. We note
that even when stabilizing buoyancy effects are present, instability on heating from above
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FIG. 10. Effect of conductivity ratio on bifurcation to two-cell flows when heating from above. Pr = 4.38,
Ca = 2.5 × 10−6, �r = 0.844, �r = 0.812, �r = 1.0, cr = 1.02, vr = 1.0, 
 = 1.5.

FIG. 11. Effect of buoyancy on bifurcation to two-cell flows when heating from above. The dashed line through
the origin has slope 1 and is approximately tangential to the locus of critical points. The dotted lines through the
origin have slopes 5 and 1.5. For the fluids considered by Juel et al. [13], the two dotted lines correspond to overall
fluid depths of 1.5 and 3 mm and the dashed line to an overall fluid depth of approximately 3.5 mm. Pr = 4.38,
Ca = 2.5 × 10−6, G = 5 × 104, �r = 0.844, �r = 0.812, �r = 1.0, cr = 1.02, kr = 0.638, vr = 1.0, 
 = 1.5.
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can still occur. The Galileo number was set to be 5 × 104 and the other parameters were as
before. In particular, the volume ratio was fixed and equal to one.

As has been reemphasized recently by Regnier et al. [29] and Velarde et al. [4], it is impor-
tant to ensure that the Boussinesq approximation is appropriate. In order for the Boussinesq
approximation to be valid for two-fluid convection, the product�i�T ∗

i must be small in each
liquid, where �T ∗

i is the temperature difference across the individual liquid. (For the flows
considered here, an almost equivalent requirement is that the ratio Ra/G be small.) Further,
for the linear relationship between surface tension and temperature to be valid, the ratio
�1�T ∗/�0 must remain small. When the temperature difference between the two plates is
on the order of a single degree, �i�T ∗

i < 10−3 in both liquids and �1�T ∗/�0 < 10−2, and
the use of the Boussinesq approximation is justified.

For the two fluids considered here

Ra = 2.67 × 1011d3�T ∗ and Ma = 3.15 × 106d�T ∗.

In Fig. 12, we plot the ratio of Marangoni number to Rayleigh number as a function of
depth d for any given �T ∗. Clearly as d increases, the Rayleigh number dominates the
Marangoni number. In Fig. 11, we observe that a line of slope 1 passing through the origin
is approximately tangential to the locus of critical points. Accordingly, if the depth is suf-
ficiently large that the Marangoni number is less than the Rayleigh number, the conducting
solution will be stable. From Fig. 12, we see that this occurs when the overall depth exceeds
approximately 3.5 mm. For overall depths greater than 3.5 mm we therefore expect the
stabilizing effects of gravity to dominate the destabilizing effects of surface tension.

Juel et al. [13, Figs. 5 and 6] report the result of a linear stability analysis performed in
a laterally unbounded domain for both top heating and bottom heating, for overall depths

FIG. 12. Ratio of Marangoni number to Rayleigh number as a function of depth.
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of 1.5, 3.0, 4.5, and 6.0 mm. At a volume ratio of 1 (d1/dtot = 0.5), the latter two cases
should be stable. From Fig. 12, the ratio of the Marangoni to Rayleigh numbers at overall
depths of 1.5 and 3 mm are approximately 5 and 1.5, respectively. At these particular ratios
the critical Marangoni numbers from Fig. 11 are 2000 and 3000, respectively. These values
correspond to temperature difference of 0.4 and 0.3 degrees, respectively, in reasonable
agreement with those reported by [13], and well within the range for which the Boussinesq
approximation is valid. Further, we conjecture that the discontinuous change in the slope of
the critical temperature difference as a function of volume fraction and the discontinuous
change in the critical wavenumber as a function of volume fraction, reported in [13, Figs. 5
and 6], are manifestations of the observation described above.

5. CONCLUSIONS

We have formulated the two-fluid Rayleigh–Marangoni–Bénard convection problem with
a deformable interface, invoking the usual Boussinesq approximation. A Landau transfor-
mation from the physical domain to a reference domain was used to determine the location
of the interface. The combined system of mapping, continuity, momentum, and energy
equations was solved in weak form in two dimensions using the finite-element method.
Numerical bifurcation techniques were used to compute surface-tension and buoyancy-
driven instabilities in finite aspect-ratio domains. The role of changing volume fraction,
of particular interest to the crystal-growing industry, can be investigated efficiently using
the approach described here. We have concentrated on the interesting case of heating from
above using real fluid properties. Our results are consistent with physical arguments and
agree well quantitatively with those of other authors who have used traditional linear sta-
bility approaches on unbounded domains. A two-dimensional finite-element approach has
the considerable advantages of allowing domains of finite lateral extent to be studied, the
effect of contact angles other than 90 degrees to be quantified, the nonlinear development
of flows to be examined, and the stability of convecting solutions to be determined.

APPENDIX: WEAK FORMULATION

For ease of reading, we drop the ∗ notation indicating dimensional quantities in the
following discussion. All quantities, such as velocities and pressures, are assumed to be
dimensional. The final weak form is then nondimensionalized to produce Eqs. (8) and (9).

A weak form of the steady momentum equations is
∫

�1

{(�̄1(u · ∇)u + �1g j) · w + �1 : ∇w} dA −
∫

�i

�1n1 · w ds

+
∫

�2

{(�̄2(u · ∇)u + �2g j) · w + �2 : ∇w} dA −
∫

�i

�2n2 · w ds = 0.

Combining the two boundary integral terms above we have
∫

�1

{(�̄1(u · ∇)u + �1g j) · w + �1 : ∇w} dA

+
∫

�2

{(�̄2(u · ∇)u + �2g j) · w + �2 : ∇w} dA +
∫

�i

[�n] · w ds = 0,
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where [·] denotes the jump across the interface and n = n1 = −n2 on the interface points
from �1 into �2. Applying the dynamic boundary condition at the interface (5),

∫
�1

{(�̄1(u · ∇)u + �1g j) ·w+ �1 : ∇w} dA +
∫

�2

{(�̄2(u · ∇)u + �2g j) · w + �2 : ∇w} dA

−
∫

�i

(K �n + (t · ∇�)t) · w ds = 0.

Using

dt
ds

= K n,

we have
∫

�1

{(�̄1(u · ∇)u) + �1g j) ·w + �1 : ∇w} dA +
∫

�2

{(�̄ 2(u · ∇)u) + �2g j) ·w+ �2 : ∇w} dA

−
∫

�i

(
�

dt
ds

+ (t · ∇�)t
)

·w ds = 0,

or
∫

�1

{(�̄1(u · ∇)u + �1g j) · w + �1 : ∇w} dA +
∫

�2

{(�̄2(u · ∇)u + �2g j) · w + �2 : ∇w} dA

−
∫

�i

d(�t)
ds

· w ds = 0,

and finally

∫
�1

{(�̄1(u · ∇)u + �1g j) · w + �1 : ∇w} dA +
∫

�2

{(�̄2(u · ∇)u + �2g j) · w + �2 : ∇w} dA

+
∫

�i

�t · dw

ds
ds = 0,

on integrating the surface integral by parts.
A weak form of the steady energy (temperature) equations is

∫
�1

(�̄1c1(u · ∇T )� + k1(∇T · ∇� )) dA −
∫

�i

k1((∇T )1 · n1)� ds

+
∫

�2

(�̄2c2(u · ∇T )� + k2(∇T · ∇� )) dA −
∫

�i

k2((∇T )2 · n2)� ds = 0.

Combining the two boundary integral terms above we have

∫
�1

(�̄1c1(u · ∇T )� + k1(∇T · ∇� )) dA +
∫

�2

(�̄2c2(u · ∇T )� + k2(∇T · ∇� )) dA

+
∫

�i

[k(∇T · n)]� ds = 0,

where [·] denotes the jump across the interface and n = n1 = − n2 on the interface points
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from �1 into �2. By continuity of thermal flux, (6),

∫
�1

(�̄1c1(u · ∇T )� + k1(∇T · ∇� )) dA +
∫

�2

(�̄2c2(u · ∇T )� + k2(∇T · ∇� )) dA = 0.
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